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ABSTRACT
The translational and rotational motions of two prolate spheroids

sedimenting in a viscous fluid have been determined by the method of

reflections. No restrictions are imposed on the spheroid orientations or
relative gsizes. As is the case in many mobility problems, the method
converged rapidly for all but almost touching configurations. The results
extend earlier work on special cases such as Wakiya's work on horizontal
orientations and agree with Gluckman et. al. and Liao and Krueger's boundary
collocation solution of axisymmetric problems. Analysis of sedimentation with
inclined axes and mirror symmetric geometry reveal both periodic and single-
encounter particle trajectories. The calculation of the separatrix between
the two behaviors required the use of the higher reflections introduced in

this work. T

AMS (MOS) Subject Classifications: 76D0S, 35Q10

Key Words: Sedimentation, Spheroids, low-Reynolds-number, Hydrodynamic
Interaction.
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SIGNIFICANCE AND EXPLANATION

The calculation of hydrodynamic interactions between particles is needed
for the understanding and control of many natural and manufacturing processes,
for instance, those involving sedimentation, colloidal stability or suspension
rheology. In these applications, the external forces, torques and the ambient
velocities are known a priori and the problem is to calculate the resulting
translational and rotational motions. In practice, since the governing
differential equations require knowledge of these motions for the boundary
condition, one has to solve first for the forces, torques and dipole moments
in a collection of translational and rotational problems and then invert them
to obtain the desired motions.

The purpose of this report is to show that these problems can be solved
directly. Explicit calculations and comparisons with other techniques are
shown for the sedimentation of two spheroids in a viscous fluid. Deviations

from the settling behavior of spherical particles, such as particle drift, are

highlighted.
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SEDIMENTATION OF TWO ARBITRARILY ORIENTED
' SPHEROIDS IN A VISCOUS PLUID

v Sangtae Kim

N 1. INTRODUCTION

¥ Suspensions of prolate spheroids have played an important role in the

theoretical development of suspension rheology. Such suspensions

9 exhidit non-Newtonian dbehavior through the interaction between the flow
o ' .
field and Brownian motion (Giesekus 1962, Brenner 1972, Hinch and Leal
M 1972. However, rigorous derivation of the material functions to date
‘3‘ have been restricted to the dilute limit, partly because of the lack of
]
.; information on multi-particle hydrodynamic interactions. Existing
information on parficle-particlo interactions is limited to certain
3 4 .
N geometries at large particle-particle separations (Wakiya 1965) or -
special configurations (Gluckman et. al. 1971; Liao and Krueger 1980).
5 (This report continues the work in (Kim 1984), MRC Technical Summary Report
g #2643.)
New results are presented here which describe the interactions
between two spheroids with arbitrary configurations and all bdbut o
i . AICS
:1 almost-touching separations. Explicit examples are worked out to ;
2 A g
. illustrate phenomena, such as the evolution of particle geometry, which L REOY
are not found in the corresponding problem for spheres. The .
‘ iV
A computational technique which is based on the method of refleoctions 3 ;§
gy "i!f,
o (Happel and Brenner 1965, Felderhof 1977), was found to converge rapidly {fﬁ ?"'
v for the sedimentation and related mobility problems. The improved R
¥ ;
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= results for the mobility functions were essential in -accurate
calculation of particle trajectories, especially in the near-field
" interactions.

In Section 2, the techniques for calculating hydrodynamic
interactions which were developed in an earlier note (Kim 1984) are used
{ to recover Wakiya's (1965) results for the resistance problem. In
: Section 3, sedimentation and angular velocities are calculated to 0(3-7)

and O(R-a) respectively, where R is the center to center separation

between the spheroids. An advantage of the present method is that it

bypasses the usual procedure of calculation and inversion of the
resistance problem. As outlined in Kim (1983), the sedimentation
problem is solved directly, without solving a collection of subsidiary
problems on translating and rotating spheroids. Problems solved include
sedimentation along and perpendiculér to the line of centers and the

evolution of configurations for spheroids with inclined axes.

2. HYDRODYNAMIC INTERACTION BETWEEN TWO STATIONARY SPHEROIDS

In this section, the method will be used to recover Wakiya's (1965)
calculations for the drag on a spheroid. Figure 1 shows the geometry
used by Wakiya (1965). 1In order to simplify the final expressions, he
restricted his analysis to two identical spheroids with both axes placed
horizontally (with gravity acting in the negative z direction). The
drag and torque on spheroid 1 was calculated for the caﬁe where both
spheroids were translating (witthi rotating) in the negative x

direction in a quiescent fluid.

In the terminology of the general literature, this is called a

resistance problem. The translational and rotational velocities are

specified and the drag and torques are to be found. The mobility
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problems pose the inverse question, {.e., forces.and torques on the

3
E ’ particle are specified and the translational and rotational motions are
F to be determined. The latter problem occurs more frequently in the

i modeling efforts of diverse flelds. Sedimentation and diffusion

problems in suspension rheology and hydrodynamic interactions in thé
Rouse-Zimm theory all require the solution of a mobility problem.
Specific applications can be found in the following samples from an

extensive list: Glendinning and Russel (1982), Batchelor (1976), and

Bird, Hassager, Armstrong and Curtiss (1977).
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FIGUPE 1. wakiya’s geometry for two horizontally-oriented spheroids.
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The sedimentation problem (a mobility problem) and the problea of
calculating the drag on stationary objects (a resistance problems) are
reciprocals of each other up to O(R's). This simple situation does not
hold at higher orders because torques are present in the resistance dut
absent in the sedimentation problem. Torques, if present, contribute
terms of O(a-h) in the drag. Therefore, Wakiya's (1965) analysis of the
drag to O(R"2) also gives the sedimentation velocity to at least that
order.

Wakiya's probieu is equivalent to that of two stationary spheroids
in a uniform stream with the stream flowing in the positive x direction
(Figure 1). We start by deriving the method of reflections solution to
Wakiya'a resistance problem, but without any simplifications regarding
relative sizes, or spheroid orientations in the unifrom stream Q.. As
in Wakiya's work, the analysis in this section will be carried ocut to
two reflections so that the drag will be accurate to O(R-z). The
orientation vector, position along the axis, ecgentrioity and the
distance from the centroid to the foci of each spheroid will be denoted
by da. L and e a=1,2.

In an earlier note (Kim 1984) it was shown that the Chwang-Wu
(1974,1975) representation for the reflection from the uniform stream

and the contribution from this (zero-th) reflection to the drag on

spheroid 1 are:

Y, (x) = U7 - U7 {0, 4,4, + aa(g-g,¢,))-
(2.1)
J 8014 (c’-E’)(1-°') v*) I(x-g,)dE
-e, 1™ (Ee?f A R b




!go) - 16"'01 {61919‘ + Q.(!-g1g1)}.g.. (2-2)

The Chwang-Wu constants a and Y depend only on the spheroid
eccentricities and are given in Table 1 and 1 is the bscen tensor. The
analagous reflection field, Y, from spheroid 2 can be obtained from

- (2.1) by permuting the particle indices. As shown in the refernces on
tk- method of reflections, this 1np1fos that the contribution from the

first reflection is -

E{") o wufa,d,d, + 0a(8-4.4.03+7 % {1 + (e2-gn) =8 vy v (g )q
L uie,d, 4, * 0.(§-d, g, ~c) 1761) Toety 7} Yo(5)05,

= -16wuc, {0,4,d, + a,(§-d,d,))-

(2.3)
c, @ e, d
Lo g Lag e

It is apparent that the dependence on the orientation and aﬁipo of

spheroids 1 and 2 comes solely from the tensor

-01 2¢ 20

P -
(co3-eh et + (ogep GeIY 1 15,50/ Bm). (2.0

For the spherical case, this tensor is known to polymer kineticists as

the Rotne-Prager-Yamakawa tensor (Rotne and Prager 1969, Yamakawa 1970).

SRS
YN
It is interesting to note that Rotne and Prager obtained their tensor Eﬁ:ﬁagx‘
SAYASEL
using a variational approach. g
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Table 1. Constants for the velocity representation for the spheroid
constants derived from Chwang and Wu (1974, 1975)

e?{-2e + (1+e2) 1og(l*°)}
a = 2e?{ze + (3e2-1) 109(1+e)}

-1
y = (1-e2){2e-(1-¢?) 109(1*®)}
l-e

= (1-e ){-2e+(1+e2) 109(1“)}
Y; -'73(1-e2)°1
oy = 2e 13{-2e + 1og(1+°)}{2e(2e 23)+3(1-¢2). 109(1+°)}

q; = @ 73{-2”(1- 2) 1°9(1+e)}{2e(2e 3)+3(1 e2) 1°g(l+e)} -1

= 262(1-¢?) {2e(3-56%)-3(1-¢%)? 109(”’11

ag = {6e-(3 e?) 1og(1+°)}

oy + oy » Ele2en(1ved) tosdtey)”

)
"

-1
Yyt Y3 = (2-e2 M- 2e+(1+e2) 109(1+e)}
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The leading order term in the contribution from the second

reflection,

E(2’) - (-Stulﬂfz).(-BtulzI;)oEgO).

comes from the monopole approximation,

T, -

Ti2 o{a.d1 g ¢ 0alg-d,d,0) Ix,- _z)/(awu) (2.5)

The drag on spheroid 1 is the sum of these contridbutions and
Wakiya's (1965) solution is recovered after the appropriate
simplifications in the geocmetry and notational changes. The
contribution from the first reflection to O(R'z) is simply a

monopole-monopole interaction.

~20,{a19,8, + 8:(4-8,9,)}+ Mz -3,) 2" (2.6)

To convert this into Wakiya's expression, we need

£ = 16vuc,(0,d,8, + 0a(§-g,8,01-0", | (2.6a)
U +(x,-x,) = U Rsiny, (2.6b)
4,V =40 =0, (2.60)

and 01-02-0. 01-02-0.

Equation (2.6) can then be simplifed to

5 "'_'."‘~ R .‘rﬁﬂ‘ 'f‘?." -~ .- .:'. .-,; ;<. : ‘.'? A "’;-.‘_ ~'.'-“:-5‘:"5~‘-\:'5:"l = .. \ v ~
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-32vu(0a, )Y /R - 32%uca,U”siny/R{ca,d,d, + oas($-d,d,)}+(x,-x,)/R
(2.7)

Therefore, the components of the drag in the direction of the uniform
stream, spheroid axis and the third orthogonal axis (or X) 0¥y 0% in

Wakiya's right handed coordinate system centered at 51) are

-32wu(ca, )tV (1+8iny)/R, . (2.82)
-321u(cu,)(cu,)u'oos¢,sinvcoa0/8 (2.8b)
and SZwu(ecg)’g'ainQ,ain'wcostln. ' (2.8¢

Since ca, and ca, equal Wakiya's R, and R, respectively, we recover his

o(R™!) term.

The O(R-z) terms come from the monopole-monopole interactions in

the second reflection or
tc*{a,d,d, %02 (8-4,d,)}- I(z,-zz)-{a,gzgz¢c.(§-gzgz)l- 1(51-52)-§$°).

Some heavy algedbra can‘be bypassed by noting that the leftmost tensor is
the one that determines the direction of the drag. The product of tho

four factors to its right simplifies to
163uc,a3/R? v*
- 16:uc1a'u'sintln'{u,(2¢sin’v)+(a,91n'¢,+c,cos‘Q,)cos’v}(;1-52)/3

+ 16:uc1c’(a,-a.)U'sinoeoaoooso./k' 92
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and the Xy1¥y0% components reduce to the correaponding terms in

Wakiya's (3.8).

The original expressions for the torque can also be recovered via xi;;,
the following contributions from the first and second reflections. g%%ﬁﬁf
i
1 -t g .y o o
=1 19 + ¥ (ﬁ‘s!,;‘.,)]-f-c} (e2-£3)Vxy, (§, )k, ,
¢ g2 a_pay(1-€3) ooy .
+ 8wxua'd,x f-c: (ej-§3201 + Chad +/ 73;?7 V) d,-8,(8,)95,,
182 < weuivg,g, + y»(g-g1g1)}.f_§: (c3-£3)Vxy, , (£, )dE,

+

Bru'gyx /g1 (o€ 01 + (e3-en o V1) g0,k 05,

In the next section, the analoéous expressions for the
sedimentation (mobility) problem are calculated to higher order. From

here on, we will not use the angles ¢,, ¢, and y. Instead, the

geometrical dependence will be represented by dot products between

X, "Xy, 4 and 4.

3. SEDIMENTATION OF TWO SPHEROIDS

3.1 General Procedure

The procedure for calculating the sedimentation velocities is a
straightforward generalization of that employed for spheres. The
essential modification is the distridbution of the singularities along

the axes of the spheroids. The calculations will be performed up to and

including the second reflection so that the error in the translational
and rotational velocities will be O(R™ 1) and O(R™S) respectively. :
The translational velocity of spheroid 1 is obtained by summing the 3~:2

contribution from the reflections.
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(0) (1) (2)
-1-!1 Og 0!1 ¢ oo

1

The zero-th reflection contributes

gf°) - !1(16'“°1)-1'(“:19191 + “:1(§-g191)}

The contribution from the first reflection is

(1) 1,0 -pay(1-e})
g, " - -2—3-11,0: (1 + (e3-E1) Traty V') ¥,(£))05,,

with the incident field

ond
v,(x) = gz-:,gg {1+ <e;-55)‘-‘(,,-:g- ) I(x-g,)/ (16m0,)eg,,

This contribution can be simplified as follows:

(1) .Ogs_ cd1
Y, " = b I—c: 20} l-cg Egg [

. —al -
+ ((C:'E:)(.‘(r:%%_ +* (c;—;; (ﬁg)vt ] 1(;1';2)/(8']:)

1 ,c d o, d 1, Leay(1-ed) __ay(1-e2)42
" T Sl 78] S 26 L g (el + e Tt

. -l -ald
o [f - (eimep Taedr o368 Jeyptyr, b 39)
with £,, = §,-§, and £ = [, .].

The second reflection contributes

(2) 1 ,¢ (1-e2)
g, - ‘2?1’-c} 0+ (c3-61) Tmely V') ¥y2(6y )4,

AP Sl T Ml MY b
_t o
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¥ n.‘ n.'.- :
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3 :" RCA 0-,

.
)
)
-

§
&
2% (1) e 2_p2 2_p2y(1=03) o0210T(r-
E: Yp(X)= 85 c;f_cg (e3-€3) {1+(c3-€3) -(5—})-.’ V219 1(x-,)/ (Bwu)dE,. (3.7)
o When we insert (3.7) into (3.6) and use the expressions for the Stokes )
5 e
> dipole and octupole, (3.6) simplifies to o
N el
1 c, d ¢, 3d g2 |
m’-c: ?2: !-cg 'i?g'z (e3 C2){ U
._2 2_r2 {(1-e2) i_r2 (1‘0’) 0 R (1) "'
(% « (cef-e)) ety * (o3& 15;2,}%, 1612612642082 g
(1-e1) (1=e2)112 (1) -
- g2 a_pa R A
% [ed-eh rmety * (o8 mmebyler 82 kv |- (3.8) e
The stresslet is obtained via the Faxen law as (Kim 1984) T
|
s{1) o auf - Jas0d,, 4~ 15,000, 4, ,- 15..) -
38 27%'721723 31370 TakTer 3Tke
1 | ' )
T (92183k%0 * 921850%k * 6109992k * S1x925%s = 2492592 %20)
3
X = 1o, C0ifsn * S1a85k * S13%u%e * Y21 %
"ot _ - - -
5o %183k%1 = %21830%k " S1a2%u - Sulzy%a) 12
:::': e 2_r2 .r2 (1-e3) 2
< I-e2 (o378 {1+ (o362 ety V1 &y0 (62045,
- - * ¢ a_p2
= 2muY (dzichzdzz + dz;‘ikzdzz) J’_cg (e3 52)v"¥1(§2)kd52' (3.9)
Nt '
t': (1) (2)
;;:'f,' The expression for U, ° is exact since the exact ¥, is used while Y,
is accurate only to O(R-s) since only those leading terms were used in
(3.7). However, the leading error term, of 0(8-7), comes from the third
5‘ reflection which was neglected.
7
e -11-

o,
1
.




The rotational velocity of spheroid 1 also follows as a sum of the

contribution from each reflection.

(1) (2)

LR (3.10)
The first reflection contridbutes

(1 _3 c _
@ - B?;f-c: (e3-83)xv,(E,)dE,

2 -al
* %E{ (€=31) I-g: (°:'51')“*(°?'5:)(%8%?)Y V) ¢yxlep(gy)egydeg,. (311

Substitutions for !2, its rate-of-strain field 32 and the expression for

the rotlet eventually lead to

(1) 1

w'l - c, 3 c, d -
DN ;_c: Tty .2 g-: (e2-£3)E,xE, ,/€°

1 e} ¢ 3&5 e, d&, -
* B (2=eT) f—c: 011!-02 2¢c, (°: E:){ '
3 _p2y(1-e3) _p2y(1-€2)430 . .
(g« (o361 ety + (582 Thedy )T JE2rbna%ybr2 S1%12

- _ray(1=e}) _pay(1-€3)16 .
(tei-€1) ety * (03763) Tmedylee G1%(Exkya*Er 20 ¢y | (3.12)
The second reflection contributes
(2) c -
u, '%E;’-c: (e}=§3)Vxy, (£, )dE,
o3, ol e oz grecor-e) 28R vt} g xfe. (€ ) g, 15, . (3.13)
Tcr T2=ely -c; "*17™ 1761 mety V71 dyxley (&), 0dg,. .
The leading order term in Y12 is irrotational. Therefore, the 0(3'5)

term in the rotational velocity comes solely from the second term in

(3.13). It should be noted that this term is absent for spheres, so for
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(2)
1

spheres, w decays more rapidly, i.e., as 0(3-7) (see Joffrey and

Onishi (1984)). Finally, (3.13) can be reduced to

1 e} ¢, 3d ¢, 3d
T T2ey Y-o) Fo /-2 a3 (ef-eh (epep
[.1 + ((c‘_ 3)(1-.3) + ( 2. ')(1-.‘))-670- ]d . d x [8(1)° ]
. 17ED) TEely ¢ (02762) TelyleT 1416124 % (82 " ky2
-al -ad
c (3. ((c;-e;)(-‘(a%ﬁ- . (c;-a;)(-'(g:-,g—;-)-gg] (si'):g, 4,70, §,,

-l -nd
- leoj-eh el + (op-ep ‘ElRE ¢ 18”2

-—nd -ad 1 '
* l:'s’ '((°1"51')(1!E:‘J) * ‘°5"5§)('(51 :‘*,)Y)gg'e’ ][§§1)’5125123512’9191’512 b

(3.1%)

EQ\Iltions (3-2)0 (305’u (3-8). (3-9). (3012) and (3-1“) m?' us to
calculate the translational and rotational velocities for any given
orientations of the spheroids. Special orientations are examined in the

following subsections.

3.2 Sedimentation of two vertically oriented spheroids along their line
of centers
The simplest geometry consists of two vertically oriented apheroids
falling along their line of centers as shown in Figure 2. The
orientation and separation between the spheroids remain invariant as can
be deduced from symmetry and the linearity of the Stokes equation. Thus
the analysis leads to a straightforward extension of Stimson and
Jeffery's (1926) results for spheres. Therefore this problem merely

serves as a dbenchmark test for computational methods.
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FIGURE 2. sedimentation of two identical spheroids falling along their A
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The sedimentation velocity, nondimensionalized by the terminal
velocity for an isolated, vertically oriented spheroid, is plotted in
Figure 3 for three aspect ratios. The solid line is indistinguishadble
from the spherical (Stimson-Jeffery) solution for R/a > 2.1. As the
aspect ratio increases, the hydrodynamic interactions become weaker.
The contribution from reflections beyond those calculated by Wakiya

become significant for R/a < 3. The results also agree with those

obtained by Gluckman et. al. (1971) and Liao and Krueger (1980) as

shown in Table 2 of the appendix. Their A factor, the drag

nondinmensionalized by the Stokes dfag of the sphere with the same

cross-sectional area, has been successfully reproduced.
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FIGURE 3. Sedimentation velocity vs. center-to-center separation
for two spheroids as in Figure 2. RAspect ratio of
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Figure 4. Sedimentation of two horizontally and parallely oriented
spheroids.

3.3 Sedimantation of two horizontally oriented spheroids

The analyais of two spheres falling porpoﬁdicular to their line of
centers can be extended to the spherolidal caao% However, to’koop the
geometry invariant, the spheroid axes must de perpendicular to doth
gravity and the line of centers.

Figures 5 and 6 show the sedimentation and angular velocities for
the same aspect ratios as boforet The terminal velocity ér an isolated,
horizontally oriented spheroid was used to scale both -Uz and -u,a. In
both figures the solid line is indistinguishable from the result for
spheres (Goldman, Cox and Brenner 1966). The dependence on the aspect
ratio is qualitatively similar to that found in the previous subsection.
Finally, it should be noted that for the geometry considered in this
subsection, the 0(3’5) term vanishes in equation (3.13) for the

rotational velocity.
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Sedimentation velocity vs. center-to-center separation

FIRURE S.

Aspect ratio of
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FIGURE 6. Angular velpcity vs. center-to-center separation for two
spheroids as in Figure 2. Aspect ratio of 1.01, =----;
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3.4 Sedimentation of two inclined spheroids

The results in the preceding subsections were qualitatively similar to
that found for spheres, and were mainly of interest as bonchnarks;tor
the computational technique. In this section, we turn our attention to
a situation where the results differ qualitatively because of the
evolution of the particle geometry. Figure T shows two inclined
spheroids settling with their axes lying in a comhon vertical plane.
Mirror sﬁinetry has been introduced to reduce the number of parameters,
but the algorithm from Subsection 3.1 can handle more general
situations. At all times, the geometry is specified by the
dimensionless center-to-center separation, R/a and 6, the azimuthal

angle for d,-

e R/a
|2

Figure 7. Mirror symmetry geometry of two inclined spheroids with their
axes in a vertical plane

«]9=

IR R I SRS N N
LR A ] N .’-".{

.
N Nl el VAP ISP PP N al




The successive improvement obtained with each new reflection is

shown in Table 1 of the appendix. At 911 but small separations, our two
" reflection solution provides accurate answers. For spheres the exact
result is available (Goldman et. al. 1966) and we see that even at
fairly small separations, the relative error is under 10f because of the
small contributions from the neglected terms.

The evolution of the geometry is caused by the anisotropy in the
mobility tensors and the rotation of the spheroids about their
respective minor axes. Since the mobility is greater in the axial than
in the transverse direction, an inclined spheroid drifts horizontally as
it settles. At the same time, the spheroid rotation changes the
orientation of the axis. These two effacts, under the quasi-steady
assumption, are governed by the dimensionless equations (with R/a

rewritten now as R)

8= vy (R,0) . (3.15)
and

R = -2U_(R,6) (3.16)

Figures 8 and 9 show the evolution of R and 6 as determined by
integrating (3.15) and (3.16) with a fourth order Runge~Kutta routine.

The plots include the curve

R =2(1 - e’cos’a)llz.

for contact between the two spheroids. Figures 10 and 11 show the

corresponding trajectories of the centroid of spheroid 2 in the x-z
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FIGURE 8. Evolution of orientation and separation for two spheroids,
aspect ratio = 10, falling as in Figure 7,
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FIGURE 9. Evolution of orientation and separation for two spheroids, R
aspect ration = 2, falling as in Figure 7. Sl
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FIGURE 10, Trajectories for the centroid of spheroid 2 corresponding i:'-;ff'.-
to the curves in Figure 8 (aspect ratio = 10). C
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Trajectories for the centroid of spheroid 2 corresponding

to the curves in Figure 9 (aspect ratio = 2).

FIGURE 11.
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If the orientation trajectories are followed from 6=0 (vertically
oriented spheroids) and all sllowed values for R, the curves in Figures
8 and 9 fall into two groups, depending on the initial value of R, If R
excieds a critical value at 6=0, the particles eventually and
monotonically separate and the orientations approach asymptotically a
limiting value for 6 which is less than x/2 because at large
separations, § goes to zero. However, for initial values of R less than
o) the critical value, the rotational motion is sufficiently large to cause
the particles to rotate bdeyond the horizontal orientation. Thereafter,
the particles drift towards each other along traJoctorica‘which are
mirror images of the outward tranctorlest The aeparairix which starts
at the critical value of R has the asymptote 8 =x/2 (horizontal
orientation).

The asymptotic behavior at large R can be obtained by using only
the leading term in wy and that in U,. Equations (3.15) and (3.16) can
then be integrated analytically. It is found that the trajectories

approach the limiting orientation 8 as
R - (1 - a,7a,)(cos20 ~ eosze')/(ﬂaa,). (3.17)

N The influence of the aspect ratio is seen by comparing Figure 8

PO A |

with 9 for aspect ratios of 10 and 2 respectively. For slender

particles, the periodic trajectories must squeeze through a very narrow

avu'w

corridor at 6=0., As the aspect ratio is reduced, this corridor widens
and the periodic trajectories become more like the straight vertical

YN XA

lines of the spherical case.

; The preceding analysis has shown that R(t) and 6(t) for the

. particle geometry of this subsection are either periodic or represent

N single encounters. Accurate calcuiatlon of the separatrix required the S%T;T

25 higher reflections, particularly at large aspect ratios.
Y
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‘ APPENDIX
4 The numerical convergence with each additional reflection is shown in

the following tables. The geometry is as in Figure 7 and the velocities

208!

have been scaled with U , the sedimentation velocity of an isolated,
vertically oriented spheroid.

Wy .

! Table 1. Inclined Spheroids: Effect of Successive Reflections

‘] Aspect Ratio = 1 and R/a = 3.0

',. (] [ J (]

j 01 g/tl 111 z/u w, yuu

] zero-th reflection 0.00000 1.00000  0.00000

> with first reflection 0.00000 1.26852 0.08333

1 with second reflection 0.00000 1.26852 0.08333
exact solution 0.00000 . 1.26680 0.08178 |

*, [ _J [ 4 »

f v, /U v, /U w, ’a/u

. zero-th reflection 0.00000 1.00000 0. 00000 :
5 with first reflection 0.00000  1.32692 0.12819

Y with second reflection 0.00000 1.32886 0.12457

Aspect Ratio = 2, 6 = 0 and R/a = 1.5

Aspect Ratio = 2, @ = 0.3y and R/a = 2

—— e g — —— = a—

: L J - L] :
.. v, /U v, /v wy y/U i \3
? zero-th reflection 0.06033 0.91697  0.00000 RN
with first reflection 0.06033 1.18429  0.13897 | il
' with second reflection 0.05296 1.18259 0.14073 - m:
: Sy
‘ RS
\ Aspect Ratio = 10, 6 = 0 and R/a2 =~ 0.7 ; tﬁ?:’*
v, " v st au” e,

; 1x 1z w0y y2/U
'j zero-th reflection 0.00000 1.00000  0.00000 g
3 with first reflection 0.00000 1.28195 0.07562 i.;"g-ég
: with second reflection 0.00000 1.28785  0.06962 EREEN
¥ ' :..:-1'.‘\
; Aspect Ratio = 10, @ = 0.3x and R/a = 2 NPT
- "é." a
3 PO N Y NRGE
3 A \é
zero-th reflection 0.14531  0.80000 0.00000 “"éﬁ;

with first reflection 0.14531 0.91759 0. 06406
with second reflection 0.14238 0.91754 0.06416 ".5::;,;.'
v o
U
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Table 2. Comparison with the boundary collocation solution of Gluckman
ot. al. (1971) for axisymmetric uniform streaming. ) is the
spheroidal drag divided by the drag on a sphere with the same
cross-sectional area.

Aspect ratio = 2

R/a Method of reflections Collocation
2 0.8485 0.8442
] 0.9811 0.9812
6 1.0458 ' 1.0u458

Aspect ratio = 5

R/a Method of reflections Collocation
2 1.3673 1.3700
4 1.5675 1.5675
6 1.6364 » 1.6364
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. NOTATION |
,‘ Y m jor semi-axis of spheroid. ‘,_3__
1: b minor semf-axis of spheroid. E\'::f
1 ¢ distance from center to foci. _ ‘_
d unit vector denoting orfentation of spherofd axis. 2_.:;
S e eccentricity of the spherotd. | %-3
2 e rate-of-strain tensor. ‘
‘}’ F force exerted on the particle by the flufd. :.-:
' g gravitational vector. ,~.
., z Oseen tensor. |

"j R center to center seperation between two spheroids.

:‘-:1 . § stressiet or symmetric part of the stress-dipole.

T torque exerted on the particle by the flufd. '

‘ ) particle translatfonal velocity..

v velocity.

5 X position vector.

\-_’ L constants in the Chwang~Wu s‘ingularity solutions.

= Y constants in the Chwang~Wu singularity solutions.

8 identfty tensor. '

_c" alternating tensor.

B e angle defined in Figure 7. |

- u viscosity. |

E 1 vector denoting position on the spheroid axis.

' g stress tensor.

J 41,4, angles defined in Figure 1.

"  J angle defined in Figure 1.

~ ® particle angular velocity.
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vorticity.
g vorticity tensor.

Subscripts
1,2 refers to spheroids at X1s Xpe

1,3,k.2,m {ndices used in the Einstein summation convention.

Superscripts
(n) denotes assocfation with the n-th reflection.
- ambient field.
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